For $\alpha \in N$, consider a relation $R$ on $N$ given by $R =\{( x , y ): 3 x +\alpha y$ is a multiple of 7$\}$.The relation $R$ is an equivalence relation if and only if.
$\alpha=14$
$\alpha$ is a multiple of $4$
$4$ is the remainder when $\alpha$ is divided by $10$
$4$ is the remainder when $\alpha$ is divided by $7$
Let $R$ be a relation on the set $N$ be defined by $\{(x, y)| x, y \in N, 2x + y = 41\}$. Then $R$ is
Let $A=\{1,2,3, \ldots 20\}$. Let $R_1$ and $R_2$ two relation on $\mathrm{A}$ such that $\mathrm{R}_1=\{(\mathrm{a}, \mathrm{b}): \mathrm{b}$ is divisible by $\mathrm{a}\}$ $\mathrm{R}_2=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}$ is an integral multiple of $\mathrm{b}\}$. Then, number of elements in $R_1-R_2$ is equal to_____.
Let $R$ and $S$ be two equivalence relations on a set $A$. Then
Let $A = \{p, q, r\}$. Which of the following is an equivalence relation on $A$
Let $R$ be a relation on $Z \times Z$ defined by$ (a, b)$$R(c, d)$ if and only if $ad - bc$ is divisible by $5$ . Then $\mathrm{R}$ is