Let $N$ denote the set of all natural numbers and $R$ be the relation on $N \times N$ defined by $(a, b)$ $R$ $(c, d)$ if $ad(b + c) = bc(a + d),$ then $R$ is
Symmetric only
Reflexive only
Transitive only
An equivalence relation
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R =\{(x, y): x$ is wife of $y\}$
Show that the relation $R$ in the set $A=\{1,2,3,4,5\}$ given by $R =\{(a, b):|a-b|$ is even $\},$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $ \{2,4\}$ are
The number of relations, on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is
Show that the relation $R$ defined in the set $A$ of all polygons as $R=\left\{\left(P_{1}, P_{2}\right):\right.$ $P _{1}$ and $P _{2}$ have same number of sides $\}$, is an equivalence relation. What is the set of all elements in $A$ related to the right angle triangle $T$ with sides $3,\,4$ and $5 ?$
Let $R_{1}$ and $R_{2}$ be two relations defined on $R$ by $a R _{1} b \Leftrightarrow a b \geq 0$ and $a R_{2} b \Leftrightarrow a \geq b$, then