- Home
- Standard 12
- Mathematics
Let $N$ denote the set of all natural numbers and $R$ be the relation on $N \times N$ defined by $(a, b)$ $R$ $(c, d)$ if $ad(b + c) = bc(a + d),$ then $R$ is
Symmetric only
Reflexive only
Transitive only
An equivalence relation
Solution
(d) For $(a, b), (c, d)$ $\epsilon$ $N × N$
$(a,\,b)R(c,\,d) \Rightarrow ad(b + c) = bc(a + d)$
Reflexive : Since $ab(b + a)$ = $ba(a + b)\forall ab \in N$,
$\therefore $$(a,\,b)R(a,\,b)$, $\therefore $ $R$ is reflexive.
Symmetric : For $(a,\,b),\,(c,\,d) \in N \times N$, let $(a,\,b)R(c,\,d)$
$\therefore $ $ad(b + c) = bc(a + d)$ ==> $bc(a + d) = ad(b + c)$
==> $cb(d + a) = da(c + b)$ ==> $(c,\,d)R(a,\,b)$
$\therefore $ $R$ is symmetric
Transitive : For $(a,\,b),(c,\,d),\,(e,\,f) \in $N$ \times N,$
Let $(a,\,b)R(c,\,d),\,(c,\,d)R(e,\,f)$
$\therefore $ $ad(b + c) = bc(a + d)$, $cf(d + e) = de(c + f)$
$⇒$ $adb + adc = bca + bcd$…..$(i)$
and $cfd + cfe = dec + def$ …..$(ii)$
$(i) ×ef + (ii) × ab$ gives,
$adbef + adcef + cfdab + cfeab$
= $bcaef + bcdef + decab + defab$
$⇒$ $adcf(b + e) = bcde(a + f)$
$⇒$ $af(b + e) = be(a + f)$
$⇒$ $(a,\,b)R\,(e,\,f)$.
$\therefore $ $R$ is transitive.
Hence $R$ is an equivalence relation.