$\alpha \in N$ માટે $R =\{(x, y): 3 x+\alpha y$ એ $7$ નો ગુણિત છે. $\}$ દ્વારા આપેલ $N$ પરનો સંબંધ $R$ ધ્યાને લો. આ સંબંધ $R$ એ સામ્ય સંબંધ હોય, તો અને તો જ :
$\alpha=14$
$\alpha$ એ $4$ નો ગુણિત છે.
$\alpha$ ને $10$ વડે ભાગતાં મળતી શેષ $4$ હોય.
$\alpha$ ને $7$ વડે ભાગતાં મળતી શેષ $4$ હોય.
ધારોકે $R =\{( P , Q ) \mid P$ અને $Q$ ઊગમબિંદુથી સમાન અંતરે આવેલ છે $\}$. એ એક સંબંધ છે, તો $(1,- 1)$ નો સામ્ય વર્ગ એ ........... ગણ છે.
ધારોકે $A=\{0,3,4,6,7,8,9,10\}$ અને $R$ એ $A$ પર વ્યાખ્યાયિત એવો સંબંધ છે કે જેથી $R=\{(x, y) \in A \times A: x-y$ એ એકી ધન પૂણાંક છે અથવા $x-y=2\}$. સંબંધ $R$ સંમિત સંબંધ બને તે માટે તેમાં ઉમેરાતા ન્યૂનતમ ધટકોની સંખ્યા $........$ છે.
સંબંધ $R$ એ ગણ $A=\{1,2,3,4,5,6,7\}$ પર $R =\{(a, b):$ $a$ અને $b$ બંને અયુગ્મ અથવા બંને યુગ્મ $\} $ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ એ સામ્ય સંબંધ છે. એ સાથે જ સાબિત કરો કે $ \{1,3,5,7\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે અને $\{2,4,6\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે, પરંતુ $\{1,3,5,7\}$ નો કોઈ પણ ઘટક ઉપગણ $\{2,4,6\}$ ના કોઈ પણ ઘટક સાથે $R$ દ્વારા સંબંધિત નથી.
જો $m$ એ $n$ નો ગુણક હોય તો $m$ અને $n$ વચ્ચે સંબંધ હોય તો આપેલ સંબંધએ . ..
ધારોકે ગણ $X=\{1,2,3, \ldots ., 20\}$ પરનાં સંબંધો $R_1$ અને $R_2$ એ $R_1=\{(x, y): 2 x-3 y=2\}$ અને $R_2=\{(x, y):-5 x+4 y=0\}$ પ્રમાણે આપેલા છે. સંબંધો ને સંમિત બનાવવા માટે $R_1$ અને $R_2$ માં ઉમેરવા પડતા ધટકો ની ન્યૂનતમ સંખ્યા અનુક્રમે જો $M$ અને $N$ હોય, તો $M+N=$ ..............