Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5 y^{2}-9 x^{2}=36$
The given equation is $5 y^{2}-9 x^{2}=36$
$\Rightarrow \frac{y^{2}}{\left(\frac{36}{5}\right)}-\frac{x^{2}}{4}=1$
$\Rightarrow \frac{y^{2}}{\left(\frac{6}{\sqrt{5}}\right)}-\frac{x^{2}}{2^{2}}=1$ ........... $(1)$
On comparing equation $( 1 )$ with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1,$ we obtain $a=\frac{6}{\sqrt{5}}$ and $b=2$
We know that $a^{2}+b^{2}=c^{2}$
$\therefore c^{2}=\frac{36}{5}+4=\frac{56}{5}$
$\Rightarrow c=\sqrt{\frac{56}{5}}=\frac{2 \sqrt{14}}{\sqrt{5}}$
Therefore, the coordinates of the foci are $\left(0,\,\pm \frac{2 \sqrt{14}}{\sqrt{5}}\right)$
The coordinates of the vertices are $\left(0,\,\pm \frac{6}{\sqrt{5}}\right)$
Eccentricity, $e=\frac{c}{a}$ $=\frac{\left(\frac{2 \sqrt{14}}{\sqrt{5}}\right)}{\left(\frac{6}{\sqrt{5}}\right)}$ $=\frac{\sqrt{14}}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}$ $=\frac{2 \times 4}{\left(\frac{6}{\sqrt{5}}\right)}$ $=\frac{4 \sqrt{5}}{3}$
The locus of the point of intersection of any two perpendicular tangents to the hyperbola is a circle which is called the director circle of the hyperbola, then the eqn of this circle is
$P(6, 3)$ is a point on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ . If the normal at point $P$ intersect the $x-$ axis at $(10, 0)$ , then the eccentricity of the hyperbola is
The graph of the conic $x^2-(y-1)^2=1$ has one tangent line with positive slope that passes through the origin. The point of the tangency being $(a, b)$ then find the value of $\sin ^{-1}\left(\frac{a}{b}\right)$
If $5x + 9 = 0$ is the directrix of the hyperbola $16x^2 -9y^2 = 144,$ then its corresponding focus is
Locus of mid points of chords of hyperbola $x^2 -y^2 = a^2$ which are tangents to the parabola $x^2 = 4by$ will be -