$0<\theta<\pi / 2$ માટે, ને અતિવલય $x^2-y^2 \operatorname{cosec}^2 \theta=5$ ની ઉત્કેન્દ્રતા, ઉપવલય $x^2 \operatorname{cosec}^2 \theta+y^2=5$ ની ઉત્કેન્દ્રતા કરતાં $\sqrt{7}$ ઘણી હોય, તો $\theta$ નું મૂલ્ય____________ છે.
$\frac{\pi}{6}$
$\frac{5 \pi}{12}$
$\frac{\pi}{3}$
$\frac{\pi}{4}$
રેખા ${\text{2x}}\,\, + \;\,\sqrt {\text{6}} y\,\, = \,\,2$ એ વક્ર $\,{x^2}\, - \,\,2{y^2}\,\, = \,\,4\,\,$ ને કયા બિંદુ આગળ સ્પર્શે છે?
અહી અતિવલય $H : \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ એ બિંદુ $(2 \sqrt{2},-2 \sqrt{2})$ માંથી પસાર થાય છે. પરવલય દોરવામાં આવે છે કે જેથી તેની નાભીએ $H$ ની ધન $x$-યામ વાળી નાભી હોય છે અને પરવલયની નિયમિકાએ $H$ ની બીજી નાભીમાંથી પસાર થાય છે. જો પરવલયની નાભીલંબની લંબાઈએ $H$ ની નાભીલંબની લંબાઈ કરતાં $e$ ગણી છે કે જ્યાં $e$ એ અતિવલય $H$ ની ઉત્કેન્દ્રિતા છે તો આપેલ પૈકી ક્યૂ બિંદુ પરવલય પર આવેલ છે ?
અતિવલય $H : x ^{2}-2 y ^{2}=4$ આપેલ છે. જો બિંદુ $P (4, \sqrt{6})$ આગળનો સ્પર્શક $x$ -અક્ષને બિંદુ $Q$ અને નાભીલંભને બિંદુ $R \left( x _{1}, y _{1}\right), x _{1}>0 $ આગળ છેદે છે. જો $F$ એ $H$ ની બિંદુ $P$ થી નજીકની નાભી હોય તો $\Delta QFR$ નું ક્ષેત્રફળ મેળવો.
$0 < \theta < \frac{\pi }{2}$.જો અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ ની ઉત્કેન્દ્રતા $2$ કર્તા વધારે હોય તો નાભીલંબની મહતમ લંબાઈ ક્યાં અંતરાલમાં મળે,
ધારોકે $A$ એ $x$-અક્ષ પરનું બિંદુ છે. $A$ પરથી વક્રી $x^2+y^2=0$ અને $y^2=16 x$ પર સામાન્ય સ્પર્શકો દોરવામાં આવે છે. જો આમાનો એક સ્પર્શક બને વક્રોને $Q$ અને $R$ માં સ્પર્શે, તો $(Q R)^2=.........$