If two points $P$ and $Q$ on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ whose centre is $C$, are such that $CP$ is perpendicular to $CQ, ( a < b )$ , then value of, $\frac{1}{{{{(CP)}^2}}} + \frac{1}{{{{(CQ)}^2}}} = $
$\frac {1}{ab}$
$\frac{1}{{{a^2}}} - \frac{1}{{{b^2}}}$
$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}}$
$\frac{1}{{{a^2} + {b^2}}}$
An ellipse intersects the hyperbola $2 x^2-2 y^2=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
$(A)$ Equation of ellipse is $x^2+2 y^2=2$
$(B)$ The foci of ellipse are $( \pm 1,0)$
$(C)$ Equation of ellipse is $x^2+2 y^2=4$
$(D)$ The foci of ellipse are $( \pm \sqrt{2}, 0)$
The curve $xy = c, (c > 0)$, and the circle $x^2 + y^2 = 1$ touch at two points. Then the distance between the points of contacts is
The auxiliary equation of circle of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is
The combined equation of the asymptotes of the hyperbola $2{x^2} + 5xy + 2{y^2} + 4x + 5y = 0$
Let the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ pass through the point $(2 \sqrt{2},-2 \sqrt{2})$. A parabola is drawn whose focus is same as the focus of $H$ with positive abscissa and the directrix of the parabola passes through the other focus of $H$. If the length of the latus rectum of the parabola is e times the length of the latus rectum of $H$, where $e$ is the eccentricity of $H$, then which of the following points lies on the parabola?