8. Sequences and Series
hard

For $\mathrm{x} \geq 0$, the least value of $\mathrm{K}$, for which $4^{1+\mathrm{x}}+4^{1-\mathrm{x}}$, $\frac{\mathrm{K}}{2}, 16^{\mathrm{x}}+16^{-\mathrm{x}}$ are three consecutive terms of an $A.P.$ is equal to :

A

$10$

B

$4$

C

$8$

D

$16$

(JEE MAIN-2024)

Solution

$ \mathrm{k}=4\left(4^{\mathrm{x}}+\frac{1}{4^{\mathrm{x}}}\right)+\left(4^{2 \mathrm{x}}+\frac{1}{4^{2 \mathrm{x}}}\right) $

$ \quad \geq 2 \quad \geq 2 $

$ \mathrm{k} \geq 10$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.