The sixth term of an $A.P.$ is equal to $2$, the value of the common difference of the $A.P.$ which makes the product ${a_1}{a_4}{a_5}$ least is given by
$x = \frac{8}{5}$
$x = \frac{5}{4}$
$x = 2/3$
None of these
If the ratio of the sum of $n$ terms of two $A.P.'s$ be $(7n + 1):(4n + 27)$, then the ratio of their ${11^{th}}$ terms will be
The first term of an $A.P. $ is $2$ and common difference is $4$. The sum of its $40$ terms will be
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=(-1)^{n-1} 5^{n+1}$
Which of the following sequence is an arithmetic sequence
Let $a, b, c, d, e$ be natural numbers in an arithmetic progression such that $a+b+c+d+e$ is the cube of an integer and $b+c+d$ is square of an integer. The least possible value of the number of digits of $c$ is