The sixth term of an $A.P.$ is equal to $2$, the value of the common difference of the $A.P.$ which makes the product ${a_1}{a_4}{a_5}$ least is given by
$x = \frac{8}{5}$
$x = \frac{5}{4}$
$x = 2/3$
None of these
If the ${p^{th}}$ term of an $A.P.$ be $\frac{1}{q}$ and ${q^{th}}$ term be $\frac{1}{p}$, then the sum of its $p{q^{th}}$ terms will be
The sums of $n$ terms of two arithmatic series are in the ratio $2n + 3:6n + 5$, then the ratio of their ${13^{th}}$ terms is
Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$
Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.
Consider a sequence whose sum of first $n$ -terms is given by $S_n = 4n^2 + 6n, n \in N$, then $T_{15}$ of this sequence is -