$x \geqslant 0$ માટે $4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$ એ એક સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદો હોય, તો $\mathrm{K}$ નું ન્યૂનતમ મૂલ્ય ........... છે.
$10$
$4$
$8$
$16$
જો શ્રેણીના પહેલા $n$ પદોનો સરવાળો $An^2 + Bn$ સ્વરૂપમાં હોય જ્યાં $A, B$ એ $n$ ના નિરપેક્ષ અચળ છે, તો ........ શ્રેણી છે.
વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.
જો $a_1, a_2 , a_3,.....$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\frac{{{a_1} + {a_2} + .... + {a_p}}}{{{a_1} + {a_2} + {a_3} + ..... + {a_q}}} = \frac{{{p^3}}}{{{q^3}}};p \ne q$ તો $\frac{{{a_6}}}{{{a_{21}}}}$ મેળવો.
ત્રણ ધન પુર્ણાકો $p, q, r \quad x^{p q^2}=y^{q r}=z^{p^2 r}$ અને $r = pq +1$ એવા છે કે જેથી $3,3 \log _y x, 3 \log _z y , 7 \log _x z$ સમાંતર શ્રેણીમાં (જ્યાં સામાન્ય તફાવત $\frac{1}{2}$ છે.) તો $r-p-q=..........$
જો $S_1, S_2$ અને $S_3$ અનુક્રમે સમાંતર શ્રેણીના પ્રથમ $n_1, n_2$ અને $n_3$ પદોના સરવાળા દર્શાવે તો, $\frac{{{S_1}}}{{{n_1}}}\,({n_2}\, - \,{n_3})\,\, + \,\,\frac{{{S_2}}}{{{n_2}}}\,({n_3}\, - \,{n_1})\,\, + \,\,\frac{{{S_3}}}{{{n_3}}}\,({n_1}\, - \,{n_2})\,\, = ....$