Let $A=\left(\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right),$ where $[t]$ denotes the greatest integer less than or equal to $\mathrm{t}$. If $\operatorname{det}(\mathrm{A})=192$, then the set of values of $\mathrm{x}$ is the interval

  • [JEE MAIN 2021]
  • A

    $[68,69)$

  • B

    $[62,63)$

  • C

    $[65,66)$

  • D

    $[60,61)$

Similar Questions

The system of linear equations $x + \lambda y - z = 0,\lambda x - y - z = 0\;,\;x + y - \lambda z = 0$ has a non-trivial solution for:

  • [JEE MAIN 2016]

Evaluate the determinants

$\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|$

If the system of equations $\alpha x+y+z=5, x+2 y+$ $3 z=4, x+3 y+5 z=\beta$ has infinitely many solutions, then the ordered pair $(\alpha, \beta)$ is equal to:

  • [JEE MAIN 2022]

The system of equations $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ has

If ${a_1},{a_2},{a_3}.....{a_n}....$ are in $G.P.$ then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ is

  • [AIEEE 2005]