- Home
- Standard 12
- Mathematics
If $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ then the ordered pair $\left( {A,B} \right) = $. . . . .
$\left( { - 4,3} \right)$
$\left( { - 4,5} \right)$
$\left( {4,5} \right)$
$\left( { - 4, - 5} \right)$
Solution
(2) Here, $\left| {\begin{array}{*{20}{c}}
{x – 4}&{2x}&{2x}\\
{2x}&{x – 4}&{2x}\\
{2x}&{2x}&{x – 4}
\end{array}} \right| = \left( {A + Bx} \right){\left( {x – A} \right)^2}$
Put $x = 0 \Rightarrow \left| {\begin{array}{*{20}{c}}
{ – 4}&0&0\\
0&{ – 4}&0\\
0&0&{ – 4}
\end{array}} \right| = {A^3} \Rightarrow {A^3} = {\left( { – 4} \right)^3}$
$ \Rightarrow A = – 4$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x – 4}&{2x}&{2x}\\
{2x}&{x – 4}&{2x}\\
{2x}&{2x}&{x – 4}
\end{array}} \right| = \left( {Bx – 4} \right){\left( {x – 4} \right)^2}$
Now take $x$ common from both the sides
$\therefore \left| {\begin{array}{*{20}{c}}
{1 – \frac{4}{x}}&{2x}&{2x}\\
{2x}&{1 – \frac{4}{x}}&{1 – \frac{4}{x}}\\
{2x}&{2x}&{2x}
\end{array}} \right| = \left( {B – \frac{4}{x}} \right){\left( {1 + \frac{4}{x}} \right)^2}$