$\alpha, \beta \in \mathbb{R}$ અને એક પ્રાકૃતિક સંખ્યા $n$ માટે, ધારોકે $A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$ તો $2 A_{10}-A_8=$.........................
$4 \alpha+2 \beta$
$2 \alpha+4 \beta$
$2 n$
$0$
જો $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, તો
જો $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ તો $x =$
$\lambda$ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણ સંહતિઓ $2 x-3 y+5 z=9$ ; $x+3 y-z=-18$ ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ નો ઉકેલ ખાલીગણ થાય.
$\left| {\,\begin{array}{*{20}{c}}2&8&4\\{ - 5}&6&{ - 10}\\1&7&2\end{array}\,} \right|$ = . . ..
જો $(2, -6), (5, 4)$ અને $(\mathrm{k}, 4)$ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ $35$ ચોરસ એકમ હોય, તો $\mathrm{k}$ નું મૂલ્ય .............. .