Gujarati
Hindi
7.Binomial Theorem
hard

For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to

A

$\mathrm{B}_{10}-\mathrm{C}_{10}$

B

$A_{10}\left(B_{10}^2-C_{10} A_{10}\right)$

C

$0$

D

$\mathrm{C}_{10}-\mathrm{B}_{10}$

(IIT-2010)

Solution

$ \text { Let } \mathrm{y}=\sum_{\mathrm{r}=1}^{10} \mathrm{~A}_{\mathrm{r}}\left(\mathrm{B}_{10} \mathrm{~B}_{\mathrm{r}}-\mathrm{C}_{10} \mathrm{~A}_{\mathrm{r}}\right) $

$ \sum_{\mathrm{r}=1}^{10} \mathrm{~A}_{\mathrm{r}} \mathrm{B}_{\mathrm{r}}=\text { coefficient of } \mathrm{x}^{20} \text { in }\left((1+\mathrm{x})^{10}(\mathrm{x}+1)^{20}\right)-1 $

$ =C_{20}-1=\mathrm{C}_{10}-1 \text { and } \sum_{\mathrm{r}=1}^{10}\left(\mathrm{~A}_{\mathrm{r}}\right)^2=\text { coefficient of } \mathrm{x}^{10} \text { in }\left((1+\mathrm{x})^{10}(\mathrm{x}+1)^{10}\right)-1=\mathrm{B}_{10}-1 $

$ \Rightarrow \mathrm{y}=\mathrm{B}_{10}\left(\mathrm{C}_{10}-1\right)-\mathrm{C}_{10}\left(\mathrm{~B}_{10}-1\right)=\mathrm{C}_{10}-\mathrm{B}_{10} .$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.