The smallest natural number $n,$ such that the coefficient of $x$ in the expansion of ${\left( {{x^2}\, + \,\frac{1}{{{x^3}}}} \right)^n}$ is $^n{C_{23}}$ is
$38$
$58$
$23$
$35$
If $1 + {x^4} + {x^5} = \sum\limits_{i = 0}^5 {{a_i}\,(1 + {x})^i,} $ for all $x$ in $R,$ then $a_2$ is
The term independent of $x$ in the expansion of ${\left( {{x^2} - \frac{{3\sqrt 3 }}{{{x^3}}}} \right)^{10}}$ is
A ratio of the $5^{th}$ term from the beginning to the $5^{th}$ term from the end in the binomial expansion of $\left( {{2^{1/3}} + \frac{1}{{2{{\left( 3 \right)}^{1/3}}}}} \right)^{10}$ is
If the constant term, in binomial expansion of $\left(2 x^{r}+\frac{1}{x^{2}}\right)^{10}$ is $180,$ than $r$ is equal to $......$
If $p$ and $q$ be positive, then the coefficients of ${x^p}$ and ${x^q}$ in the expansion of ${(1 + x)^{p + q}}$will be