If the variance of the first $n$ natural numbers is $10$ and the variance of the first m even natural numbers is $16$, then $m + n$ is equal to
The mean and the standard deviation $(s.d.)$ of five observations are $9$ and $0,$ respectively. If one of the observations is changed such that the mean of the new set of five observations becomes $10,$ then their $s.d.$ is?
The sum of squares of deviations for $10$ observations taken from mean $50$ is $250$. The co-efficient of variation is.....$\%$
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
Consider the statistics of two sets of observations as follows :
Size | Mean | Variance | |
Observation $I$ | $10$ | $2$ | $2$ |
Observation $II$ | $n$ | $3$ | $1$ |
If the variance of the combined set of these two observations is $\frac{17}{9},$ then the value of $n$ is equal to ..... .