If mean and standard deviation of $5$ observations $x_1 ,x_2 ,x_3 ,x_4 ,x_5$ are $10$ and $3$, respectively, then the variance of $6$ observations $x_1 ,x_2 ,.....,x_3$ and $-50$ is equal to
$509.5$
$586.5$
$582.5$
$507.5$
The data is obtained in tabular form as follows.
${x_i}$ | $60$ | $61$ | $62$ | $63$ | $64$ | $65$ | $66$ | $67$ | $68$ |
${f_i}$ | $2$ | $1$ | $12$ | $29$ | $25$ | $12$ | $10$ | $4$ | $5$ |
The $S.D$. of the first $n$ natural numbers is
Find the variance of the following data: $6,8,10,12,14,16,18,20,22,24$
Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
Let $X=\{11,12,13, \ldots ., 40,41\}$ and $Y=\{61,62$, $63, \ldots ., 90,91\}$ be the two sets of observations. If $\bar{x}$ and $\bar{y}$ are their respective means and $\sigma^2$ is the variance of all the observations in $X \cup Y$, then $\left|\overline{ x }+\overline{ y }-\sigma^2\right|$ is equal to $.................$.