किसी बारम्बारता बंटन के लिये मानक विचलन की गणना निम्न में से किस सूत्र द्वारा करते हैं

  • A
    $\sigma = \sqrt {\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right) - \frac{{\sum \,f{d^2}}}{{\sum \,f}}} $
  • B
    $\sigma = \sqrt {\frac{{\sum \,f{d^2}}}{{\sum \,f}} - {{\left( {\frac{{\sum \,f{d^2}}}{{\sum \,f}}} \right)}^2}} $
  • C
    $\sigma = \sqrt {{{\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right)}^2} - \frac{{\sum \,f{d^2}}}{{\sum \,f}}} $
  • D
    $\sigma = \sqrt {\frac{{\sum \,f{d^2}}}{{\sum \,f}} - {{\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right)}^2}} $

Similar Questions

लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए।

${x_i}$ $60$ $61$ $62$ $63$ $64$ $65$ $66$ $67$ $68$
${f_i}$ $2$ $1$ $12$ $29$ $25$ $12$ $10$ $4$ $5$

$10$ छात्रों के अंकों के माध्य तथा मानक विचलन क्रमशः $50$ तथा $12$ ज्ञात किए गए। बाद में यह देखा गया कि दो छात्रों के अंक $20$ तथा $25$ गलती से क्रमशः $45$ तथा $50$ पढ़े गए थे। तो सही प्रसरण है_______________.

  • [JEE MAIN 2023]

माना बंटन

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है

  • [JEE MAIN 2023]

माना बारंबारता बंटन

$\mathrm{x}$ $\mathrm{x}_{1}=2$ $\mathrm{x}_{2}=6$ $\mathrm{x}_{3}=8$ $\mathrm{x}_{4}=9$
$\mathrm{f}$ $4$ $4$ $\alpha$ $\beta$

के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा

  • [JEE MAIN 2021]

माना $X _{1}, X _{2}, \ldots, X _{18}$ अठारह प्रेक्षण हैं, जिनके लिए $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36$ तथा $\sum_{ i =1}^{18}\left( X _{ i }-\beta\right)^{2}=90$ हैं, जहाँ $\alpha$ तथा $\beta$ भिन्न वास्तविक संख्याऐं हैं। यदि इन प्रेक्षणों का मानक विचलन $1$ है, तो $|\alpha-\beta|$ का मान बराबर है

  • [JEE MAIN 2021]