- Home
- Standard 11
- Mathematics
13.Statistics
normal
किसी बारम्बारता बंटन के लिये मानक विचलन की गणना निम्न में से किस सूत्र द्वारा करते हैं
A$\sigma = \sqrt {\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right) - \frac{{\sum \,f{d^2}}}{{\sum \,f}}} $
B$\sigma = \sqrt {\frac{{\sum \,f{d^2}}}{{\sum \,f}} - {{\left( {\frac{{\sum \,f{d^2}}}{{\sum \,f}}} \right)}^2}} $
C$\sigma = \sqrt {{{\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right)}^2} - \frac{{\sum \,f{d^2}}}{{\sum \,f}}} $
D$\sigma = \sqrt {\frac{{\sum \,f{d^2}}}{{\sum \,f}} - {{\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right)}^2}} $
Solution
(d)यह स्पष्ट है।
Standard 11
Mathematics
Similar Questions
माना बारंबारता बंटन
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा
लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए।
${x_i}$ | $60$ | $61$ | $62$ | $63$ | $64$ | $65$ | $66$ | $67$ | $68$ |
${f_i}$ | $2$ | $1$ | $12$ | $29$ | $25$ | $12$ | $10$ | $4$ | $5$ |
hard