किसी शून्येत्तर (non-zero) सम्मिश्र संख्या (complex number) $z$ के लिये, माना कि $\arg (z)$ इसके मुख्य कोणांक (principal argument) को दर्शाता है, जहाँ - $\pi<\arg (z) \leq \pi \mid$ तब निम्नलिखित में से कौन सा
(से) कथन असत्य है (हैं)?
$(A)$ $\arg (-1-i)=\frac{\pi}{4}$, जहाँ $i=\sqrt{-1}$
$(B)$ फलन (function) $f: R \rightarrow(-\pi, \pi]$, जो सभी $t \in R$ के लिये $f(t)=\arg (-1+i t)$ के द्वारा परिभाषित है, $R$ के सभी बिंदुओं पर संतत (continuous) है, जहाँ $i=\sqrt{-1}$
$(C)$ किन्ही भी दो शून्येत्तर सम्मिश्र संख्याओं $z_1$ और $z_2$ के लिए $\arg \left(\frac{z_1}{z_2}\right)-\arg \left(z_1\right)+\arg \left(z_2\right)$
$2 \pi$ का एक पूर्णांक गुणज (integer multiple) है
$(D)$ किन्ही भी तीन दी गयी भिन्न (distinct) सम्मिश्र संख्याओं $z_1, z_2$ और $z_3$ के लिये, प्रतिबंध (condition) $\arg \left(\frac{\left(z-z_1\right)\left(z_2-z_3\right)}{\left(z-z_3\right)\left(z_2-z_1\right)}\right)=\pi$, को संतुष्ट करने वाले बिंदु $z$ का बिंदुपथ (locus) एक सरल रेखा (straight line) पर स्थित है
$A,B,D$
$A,B,C$
$A,B$
$A,C$
मापांक और कोणांक ज्ञात कीजिए
$z=-1-i \sqrt{3}$
${z_1}$ एक सम्मिश्र संख्या है जिसके लिये $|{z_1}| = 1$ तथा ${z_2}$कोई अन्य सम्मिश्र संख्या है, तब $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
$\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$ का कोणांक होगा
यदि सम्मिश्र संख्याओं ${z_1}$ तथा ${z_2}$ के लिये $arg({z_1}/{z_2}) = 0,$तब $|{z_1} - {z_2}|$ =
यदि ${z_1}.{z_2}........{z_n} = z,$ हो, तब $arg\,{z_1} + arg\,{z_2} + ....$+$arg{z_n}$और $arg\,z$ का अन्तर होगा