4-1.Complex numbers
medium

यदि $z$ व $\omega $ दो अशून्य सम्मिश्र संख्याएँ इस प्रकार हों, कि $|z\omega |\, = 1$ तथा  $arg(z) - arg(\omega ) = \frac{\pi }{2}$ हो, तब $\bar z\omega $ का मान है

A

$1$

B

$-1$

C

$i$

D

$-i$

(AIEEE-2003)

Solution

(d) $|z|\,|\omega |\, = 1$ …..$(i)$

एवं $arg\,\left( {\frac{z}{\omega }} \right) = \frac{\pi }{2}\,\,\, \Rightarrow \,\,\frac{z}{\omega } = i$ $⇒$  $\left| {\frac{z}{\omega }} \right| = 1$  …..$(ii)$

समी. $(i) $ व $(ii)$ से

$|z|\, = \,|\omega |\, = 1$ एवं $\frac{z}{\omega } + \frac{{\bar z}}{{\bar \omega }} = 0;\,\,\,z\bar \omega  + \bar z\omega  = 0$

$\bar z\omega  =  – z\bar \omega  = \frac{{ – z}}{\omega }\bar \omega \,\omega $; $\bar z\omega  =  – \,i\,|\omega {|^2} =  – i.$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.