A value of $c$ for which the conclusion of mean value the theorem holds for the function $f(x) = log{_e}x$ on the interval $[1, 3]$ is
$log_e\ 3$
$log_3\ e$
$2\ log_3\ e$
$\frac{1}{2}{\log _e}\,3$
The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is
The value of $\left[ {\frac{{\log \left( {\frac{x}{e}} \right)}}{{x - \,e}}} \right]\,\forall x\, > \,e$ is equal to (where [.] denotes greatest integer function)
Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a thrice differentiable function such that $f(0)=0, f(1)=1, f(2)=-1, f(3)=2$ and $f(4)=-2$. Then, the minimum number of zeros of $\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)(x)$ is....................
If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............
Let $f, g:[-1,2] \rightarrow R$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of $f$ and $g$ at the points $-1.0$ and $2$ be as given in the following table:
$x=-1$ | $x=0$ | $x=2$ | |
$f(x)$ | $3$ | $6$ | $0$ |
$g(x)$ | $0$ | $1$ | $-1$ |
In each of the intervals $(-1,0)$ and $(0,2)$ the function $(f-3 g)^{\prime \prime}$ never vanishes. Then the correct statement(s) is(are)
$(A)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solutions in $(-1,0) \cup(0,2)$
$(B)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$
$(C)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(0,2)$
$(D)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly two solutions in $(-1,0)$ and exactly two solutions in $(0,2)$