A value of $c$ for which the conclusion of mean value the theorem holds for the function $f(x) = log{_e}x$ on the interval $[1, 3]$ is

  • A

    $log_e\ 3$

  • B

    $log_3\ e$

  • C

    $2\ log_3\ e$

  • D

    $\frac{1}{2}{\log _e}\,3$

Similar Questions

Suppose that $f (0) = - 3$ and $f ' (x) \le 5$ for all values of $x$. Then the largest value which $f (2)$ can attain is

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=x^{2}-1$ for $x \in[1,2]$

If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has

Let $f, g:[-1,2] \rightarrow R$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of $f$ and $g$ at the points $-1.0$ and $2$ be as given in the following table:

  $x=-1$ $x=0$ $x=2$
$f(x)$ $3$ $6$ $0$
$g(x)$ $0$ $1$ $-1$

In each of the intervals $(-1,0)$ and $(0,2)$ the function $(f-3 g)^{\prime \prime}$ never vanishes. Then the correct statement(s) is(are)

$(A)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solutions in $(-1,0) \cup(0,2)$

$(B)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$

$(C)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(0,2)$

$(D)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly two solutions in $(-1,0)$ and exactly two solutions in $(0,2)$

  • [IIT 2015]

Let $a > 0$ and $f$ be continuous in $[- a, a]$. Suppose that $f ' (x) $ exists and $f ' (x) \le 1$ for all $x \in (- a, a)$. If $f (a) = a$ and $f (- a) = - a$ then $f (0)$