For a real number $x,\;[x]$ denotes the integral part of $x$. The value of $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$ is
$49$
$50$
$48$
$51$
If $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ for $x > 2$, then $f(11) = $
Show that none of the operations given above has identity.
Suppose $f(x) = {(x + 1)^2}$ for $x \ge - 1$. If $g(x)$ is the function whose graph is the reflection of the graph of $f(x)$ with respect to the line $y = x$, then $g(x)$ equals
Let $f(x) = cos(\sqrt P \,x),$ where $P = [\lambda], ([.]$ is $G.I.F.)$ If the period of $f(x)$ is $\pi$. then
Let $P(x)$ be a polynomial with real coefficients such that $P\left(\sin ^2 x\right)=P\left(\cos ^2 x\right)$ for all $x \in[0, \pi / 2)$. Consider the following statements:
$I.$ $P(x)$ is an even function.
$II.$ $P(x)$ can be expressed as a polynomial in $(2 x-1)^2$
$III.$ $P(x)$ is a polynomial of even degree.
Then,