किसी वास्तविक संख्या $x$ के लिए यदि $[x]$ संख्या $x$ के पूर्णांक भाग को प्रदर्शित करें तो निम्न व्यंजक का मान होगा $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$

  • [IIT 1994]
  • A

    $49$

  • B

    $50$

  • C

    $48$

  • D

    $51$

Similar Questions

यदि फलन $f( x )=\frac{\cos ^{-1} \sqrt{ x ^{2}- x +1}}{\sqrt{\sin ^{-1}\left(\frac{2 x -1}{2}\right)}}$ का प्रान्त, अन्तराल $(\alpha, \beta]$ है, तो $\alpha+\beta$ बराबर है -

  • [JEE MAIN 2021]

यदि $f(x) = \log \frac{{1 + x}}{{1 - x}}$, तब $f(x)$ है

माना फलन $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\lceil\mathrm{x}\rceil-\mathrm{x}}}$ जहाँ $\lceil\mathrm{x}\rceil$ न्यूनतम पूर्णांक $\geq x$ है, के प्रांत तथा परिसर क्रमशः समुच्चय $A$ तथा $B$ है। तो कथनों

$(\mathrm{S} 1): \mathrm{A} \cap \mathrm{B}=(1, \infty)-\mathrm{N}$ तथा

$(\mathrm{S} 2): \mathrm{A} \cup \mathrm{B}=(1, \infty)$ में

  • [JEE MAIN 2023]

यदि फलन $f : R -\{1 .-1\} \rightarrow A , f (x)=\frac{x^{2}}{1-x^{2}}$, द्वारा परिभाषित है तथा आच्छादी (surjective) है, तो $A$ बराबर है :

  • [JEE MAIN 2019]

एक फलन $f$, समीकरण $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$, सभी $x \ne 1$ के लिए, को सन्तुष्ट करता है। तो $f(7)$ का मान है