$\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]  = . . . . $ (કે જ્યાં $[x]$ એ મહતમ પૃણાંક વિધેય છે )

  • [IIT 1994]
  • A

    $49$

  • B

    $50$

  • C

    $48$

  • D

    $51$

Similar Questions

વિધેય $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ નો પ્રદેશ મેળવો.

  • [JEE MAIN 2019]

જો $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, તો $f(y) = $

ધારો કે $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ તો માત્ર $ x=-1 $ માટે $p\left( x \right) = 0$ તથા $p\left( { - 2} \right) = 2$ તો $p\left( 2 \right)$ મેળવો.

  • [AIEEE 2011]

વિધેય $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ નિ મહત્તમ કિમત ......... થાય.

અહી $\mathrm{f}(\mathrm{x})$ એ $3$ ઘાતાંક વાળી બહુપદી છે કે જેથી  $\mathrm{k}=2,3,4,5 $ માટે $\mathrm{f}(\mathrm{k})=-\frac{2}{\mathrm{k}}$ થાય છે તો  $52-10 \mathrm{f}(10)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]