8. Sequences and Series
normal

For a series $S = 1 -2 + 3\, -\, 4 … n$ terms,

Statement $-1$ : Sum of series always dependent on the value of $n$ , i.e. whether it is even or odd. 

Statement $-2$ : Sum of series is $-\frac {n}{2}$ when value of $n$ is any even integer

A

Statement $-1$ is true, statement $-2$ is true but statement $-1$ is not the correct explanation for statement $-2$

B

Statement $-1$ is true, statement $-2$ is false

C

Statement $-1$ is false, statement $-2$ is true

D

Both statements are true, and statement $-1$ is the true explanation of statement $-2$

Solution

$S=1 \cdot 2+3-4+\ldots \ldots \ldots n$ terms

for n to be even, let $n=2 \mathrm{m}$

$S=1 \cdot 2+3 \cdot 4+\ldots \ldots \quad 2 m$ terms

$S=(1-2)+(3-4)+(5-6)+\ldots \ldots \ldots m$ terms

$S=(-1)+(-1)+(-1)+\ldots \ldots \ldots m$ terms

$S=-m=\frac{-n}{2}$

for $n$ to be odd let it be $2 \mathrm{m}+1$ so,

$\mathrm{S}=1-2+3-4+\ldots \ldots \ldots(2 \mathrm{m}+1)$ tems

$S=(1-2)+(3-4)+(5-6)+\ldots \ldots \ldots[(2 m-1)-2 m](2 m+1)$

$-m+2 m+1$

$ = (m + 1)\quad \left\langle {\begin{array}{*{20}{c}}
{n = 2m + 1}\\
{m = \frac{{n – 1}}{2}}
\end{array}} \right\rangle $

$\frac{\mathrm{n}-1}{2}+1$

$=\frac{n+1}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.