If the $A.M.$ between $p^{th}$ and $q^{th}$ terms of an $A.P.$ is equal to the $A.M.$ between $r^{th}$ and $s^{th}$ terms of the same $A.P.$, then $p + q$ is equal to
$r + s - 1$
$r + s - 2$
$r + s + 1$
$r + s$
The common difference of the $A.P.$ $b_{1}, b_{2}, \ldots,$ $b_{ m }$ is $2$ more than the common difference of $A.P.$ $a _{1}, a _{2}, \ldots, a _{ n } .$ If $a _{40}=-159, a _{100}=-399$ and $b _{100}= a _{70},$ then $b _{1}$ is equal to
Let $S_n$ and $s_n$ deontes the sum of first $n$ terms of two different $A.P$. for which $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ then $\frac{{{s_n}}}{{{S_{2n}}}}$
The sides of a right angled triangle are in arithmetic progression. If the triangle has area $24$ , then what is the length of its smallest side ?
If the sum of first $n$ terms of an $A.P.$ is $cn(n -1)$ , where $c \neq 0$ , then sum of the squares of these terms is
Which of the following sequence is an arithmetic sequence