If the $A.M.$ between $p^{th}$ and $q^{th}$ terms of an $A.P.$ is equal to the $A.M.$ between $r^{th}$ and $s^{th}$ terms of the same $A.P.$, then $p + q$ is equal to
$r + s - 1$
$r + s - 2$
$r + s + 1$
$r + s$
Let $S_n$ denote the sum of the first $n$ terms of an arithmetic progression. If $\mathrm{S}_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $S_{15}-S_5$ is equal to:
Find the sum of odd integers from $1$ to $2001 .$
Let $a$, $b$ be two non-zero real numbers. If $p$ and $r$ are the roots of the equation $x ^{2}-8 ax +2 a =0$ and $q$ and $s$ are the roots of the equation $x^{2}+12 b x+6 b$ $=0$, such that $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ are in A.P., then $a ^{-1}- b ^{-1}$ is equal to $......$
A man deposited $Rs$ $10000$ in a bank at the rate of $5 \%$ simple interest annually. Find the amount in $15^{\text {th }}$ year since he deposited the amount and also calculate the total amount after $20$ years.
If the sum of the first $2n$ terms of $2,\,5,\,8...$ is equal to the sum of the first $n$ terms of $57,\,59,\,61...$, then $n$ is equal to