8. Sequences and Series
hard

If the $A.M.$ between $p^{th}$ and $q^{th}$ terms of an $A.P.$ is equal to the $A.M.$ between $r^{th}$ and $s^{th}$ terms of the same $A.P.$, then $p + q$ is equal to

A

$r + s - 1$

B

$r + s - 2$

C

$r + s + 1$

D

$r + s$

(AIEEE-2012)

Solution

Given : $\frac{{{a_p} + {a_q}}}{2} = \frac{{{a_r} + {a_s}}}{2}$

$\begin{array}{l}
 \Rightarrow a + \left( {p – 1} \right)d + a + \left( {q – 1} \right)d\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = a + \left( {r – 1} \right)d + a + \left( {s – 1} \right)d
\end{array}$

$ \Rightarrow 2a + \left( {p + q} \right)d – 2d = 2a + \left( {r + s} \right)d – 2d$

$ \Rightarrow \left( {p + q} \right)d = \left( {r + s} \right)d \Rightarrow p + q = r + s.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.