Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

For an ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ with vertices $A$  and $ A', $ tangent drawn at the point $P$  in the first quadrant meets the $y-$axis in $Q $ and the chord $ A'P$ meets the $y-$axis in $M.$  If $ 'O' $ is the origin then $OQ^2 - MQ^2$  equals to

A

$9$

B

$13$

C

$4$

D

$5$

Solution

$a = 3 ; b = 2$
$T :\frac{{x\cos \theta }}{3} + \frac{{y\sin \theta }}{2} = 1$ 
$x = 0 ; y = 2 cosec \theta$ 
chord $A'P,$ $y = \frac{{2\sin \theta }}{{3(\cos \theta  + 1)}}(x + 3)$ 
put $x = 0$ $ y$  =$\frac{{2\sin \theta }}{{1 + \cos \theta }}$ = $OM$ 
Now $OQ^2 – MQ^2 = OQ^2 – (OQ – OM)^2$$ = 2(OQ)(OM) – OM^2 = OM\{ 2(OQ) – (OM) \} $ 
= $\frac{{2\sin \theta }}{{1 + \cos \theta }}$$\left[ {\frac{y}{{\sin \theta }} – \frac{{2\sin \theta }}{{1 + \cos \theta }}} \right]$ $= 4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.