- Home
- Standard 11
- Mathematics
For an ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ with vertices $A$ and $ A', $ tangent drawn at the point $P$ in the first quadrant meets the $y-$axis in $Q $ and the chord $ A'P$ meets the $y-$axis in $M.$ If $ 'O' $ is the origin then $OQ^2 - MQ^2$ equals to
$9$
$13$
$4$
$5$
Solution

$a = 3 ; b = 2$
$T :\frac{{x\cos \theta }}{3} + \frac{{y\sin \theta }}{2} = 1$
$x = 0 ; y = 2 cosec \theta$
chord $A'P,$ $y = \frac{{2\sin \theta }}{{3(\cos \theta + 1)}}(x + 3)$
put $x = 0$ $ y$ =$\frac{{2\sin \theta }}{{1 + \cos \theta }}$ = $OM$
Now $OQ^2 – MQ^2 = OQ^2 – (OQ – OM)^2$$ = 2(OQ)(OM) – OM^2 = OM\{ 2(OQ) – (OM) \} $
= $\frac{{2\sin \theta }}{{1 + \cos \theta }}$$\left[ {\frac{y}{{\sin \theta }} – \frac{{2\sin \theta }}{{1 + \cos \theta }}} \right]$ $= 4$