- Home
- Standard 11
- Mathematics
The locus of the point of intersection of perpendicular tangents to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is
${x^2} + {y^2} = {a^2} - {b^2}$
${x^2} - {y^2} = {a^2} - {b^2}$
${x^2} + {y^2} = {a^2} + {b^2}$
${x^2} - {y^2} = {a^2} + {b^2}$
Solution
(c) Let point be $(h,k)$ their pair of tangent will be
$\left( {\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} – 1} \right)\,\left( {\frac{{{h^2}}}{{{a^2}}} + \frac{{{k^2}}}{{{b^2}}} – 1} \right) = {\left( {\frac{{hx}}{{{a^2}}} + \frac{{yk}}{{{b^2}}} – 1} \right)^2}$
Pair of tangents will be perpendicular, if
coefficient of ${x^2}$ + coefficient of ${y^2} = 0$
==>$\frac{{{k^2}}}{{{a^2}{b^2}}} + \frac{{{h^2}}}{{{a^2}{b^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}}$
==> ${h^2} + {k^2} = {a^2} + {b^2}$
Replace $(h,k)$ by $(x,y)$
==> ${x^2} + {y^2} = {a^2} + {b^2}$.