The locus of the point of intersection of perpendicular tangents to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is
${x^2} + {y^2} = {a^2} - {b^2}$
${x^2} - {y^2} = {a^2} - {b^2}$
${x^2} + {y^2} = {a^2} + {b^2}$
${x^2} - {y^2} = {a^2} + {b^2}$
If tangents are drawn to the ellipse $x^2 + 2y^2 = 2$ at all points on the ellipse other than its four vertices than the mid points of the tangents intercepted between the coordinate axes lie on the curve
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(b < a)$, be a ellipse with major axis $A B$ and minor axis $C D$. Let $F_1$ and $F_2$ be its two foci, with $A, F_1, F_2, B$ in that order on the segment $A B$. Suppose $\angle F_1 C B=90^{\circ}$. The eccentricity of the ellipse is
If two tangents drawn from a point $(\alpha, \beta)$ lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals
The co-ordinates of the foci of the ellipse $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ are
Let $C$ be the largest circle centred at $(2,0)$ and inscribed in the ellipse $=\frac{x^2}{36}+\frac{y^2}{16}=1$.If $(1, \alpha)$ lies on $C$, then $10 \alpha^2$ is equal to $.........$