If tangents are drawn from the point ($2 + 13cos\theta , 3 + 13sin\theta $) to the ellipse $\frac{(x-2)^2}{25} + \frac{(y-3)^2}{144} = 1,$ then angle between them, is
$\frac{\pi }{6}$
$\frac{\pi }{3}$
$\frac{\pi }{2}$
$\frac{2\pi }{3}$
If two tangents drawn from a point $(\alpha, \beta)$ lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals
The line $y = mx + c$ is a normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$, if $c = $
The pole of the straight line $x + 4y = 4$ with respect to ellipse ${x^2} + 4{y^2} = 4$ is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 x^{2}+4 y^{2}=144$
If the foci and vertices of an ellipse be $( \pm 1,\;0)$ and $( \pm 2,\;0)$, then the minor axis of the ellipse is