For any $\theta \, \in \,\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$, the expression $3\,{\left( {\sin \,\theta  - \cos \,\theta } \right)^4} + 6{\left( {\sin \,\theta  + \cos \,\theta } \right)^2} + 4\,{\sin ^6}\,\theta $ equals

  • [JEE MAIN 2019]
  • A

    $13 - 4\,{\cos ^2}\,\theta \, + 6\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $

  • B

    $13 - 4\,{\cos ^6}\,\theta \,$

  • C

    $13 - 4\,{\cos ^2}\,\theta \, + 6\,\,{\cos ^4}\,\theta $

  • D

    $13 - 4\,{\cos ^4}\,\theta \, + 2\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $

Similar Questions

The value of $cot\, x + cot\, (60^o  + x) + cot\, (120^o  + x)$ is equal to :

If $\sin A = n\sin B,$ then $\frac{{n - 1}}{{n + 1}}\tan \,\frac{{A + B}}{2} = $

If $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, then $\theta$ is equal to

If $\cos \,(\theta - \alpha ) = a,\,\,\sin \,(\theta - \beta ) = b,\,\,$then ${\cos ^2}(\alpha - \beta ) + 2ab\,\sin \,(\alpha - \beta )$ is equal to

$4 \,\,sin5^o \,\,sin55^o \,\,sin65^o$ has the values equal to