Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then $\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ is equal to
$\frac{\sqrt{11}-1}{2 \sqrt{3}}$
$\frac{\sqrt{11}+1}{2 \sqrt{3}}$
$\frac{\sqrt{11}+1}{3 \sqrt{2}}$
$\frac{\sqrt{11}-1}{3 \sqrt{2}}$
In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to
If $\cos A = \frac{3}{4}$, then $32\sin \frac{A}{2}\cos \frac{5}{2}A = $
$2\cos x - \cos 3x - \cos 5x = $
If $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$
$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$
and $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ then
The sines of two angles of a triangle are equal to $\frac{5}{{13}}$ & $\frac{{99}}{{101}}.$ The cosine of the third angle is :