Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S. $ $=\cos 4 x$

$=\cos 2(2 x)$

$=1-2 \sin ^{2} 2 x\left[\cos 2 A=1-2 \sin ^{2} A\right]$

$=1-2(2 \sin x \cos x)^{2}[\sin 2 A=2 \sin A \cos A]$

$=1-8 \sin ^{2} x \cos ^{2} x$

$=$ $R.H.S.$

Similar Questions

If $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ then $x + y + z = $

$\cos \alpha .\sin (\beta - \gamma ) + \cos \beta .\sin (\gamma - \alpha ) + \cos \gamma .\sin (\alpha - \beta ) = $

Which of the following functions have the maximum value unity ?

If $A$ lies in the third quadrant and $3\ tanA - 4 = 0$ , then find the value of $5\ sin\ 2A + 3\  sinA + 4\  cosA$

Prove that $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$