$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $
$\cos 2\theta $
$cos 3\theta$
$\sin 2\theta $
$\sin 3\theta $
The expression,$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ when simplified reduces to :
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
If $\tan A = \frac{1}{2},$ then $\tan 3A = $
$\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }} = $ (when $x$ lies in $II^{nd}$ quadrant)
Prove that $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$