$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $

  • A

    $\cos 2\theta $

  • B

    $cos 3\theta$

  • C

    $\sin 2\theta $

  • D

    $\sin 3\theta $

Similar Questions

The value of $\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}} = $

If $\sin \theta+\cos \theta=\frac{1}{2}$, then $16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ is equal to:

  • [JEE MAIN 2021]

$\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ = $

If $\frac{{\cos x}}{a} = \frac{{\cos (x + \theta )}}{b} = \frac{{\cos (x + 2\theta )}}{c} = \frac{{\cos (x + 3\theta )}}{d} \, ,$ then $\left( {\frac{{a + c}}{{b + d}}} \right)$ is equal to :-

If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always