કોઈ પણ $\theta \, \in \,\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$ માટે, $3\,{\left( {\sin \,\theta  - \cos \,\theta } \right)^4} + 6{\left( {\sin \,\theta  + \cos \,\theta } \right)^2} + 4\,{\sin ^6}\,\theta $ =

  • [JEE MAIN 2019]
  • A

    $13 - 4\,{\cos ^2}\,\theta \, + 6\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $

  • B

    $13 - 4\,{\cos ^6}\,\theta \,$

  • C

    $13 - 4\,{\cos ^2}\,\theta \, + 6\,\,{\cos ^4}\,\theta $

  • D

    $13 - 4\,{\cos ^4}\,\theta \, + 2\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $

Similar Questions

$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $

$\left( {1 + \cos \frac{\pi }{8}} \right)\,\left( {1 + \cos \frac{{3\pi }}{8}} \right)\,\left( {1 + \cos \frac{{5\pi }}{8}} \right)\,\left( {1 + \cos \frac{{7\pi }}{8}} \right) = $

  • [IIT 1984]

$\tan {3^o} + 2\tan {6^o} + 4\tan {12^o} + 8\cot {24^o} = \cot {\theta ^o}$ થાય તો 

જો $\frac{{\cos x}}{a} = \frac{{\cos (x + \theta )}}{b} = \frac{{\cos (x + 2\theta )}}{c} = \frac{{\cos (x + 3\theta )}}{d} \, ,$ હોય તો  $\left( {\frac{{a + c}}{{b + d}}} \right)$ = 

જો $x + y = 3 - cos4\theta$ અને $x - y = 4 \,sin2\theta$ હોય તો