किसी $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ के लिये, व्यंजक $3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta$ होगा
$13 - 4\,{\cos ^2}\,\theta \, + 6\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $
$13 - 4\,{\cos ^6}\,\theta \,$
$13 - 4\,{\cos ^2}\,\theta \, + 6\,\,{\cos ^4}\,\theta $
$13 - 4\,{\cos ^4}\,\theta \, + 2\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $
निम्नलिखित को सिद्ध कीजिए
$\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$
$\sin ^{2} 2 \theta+\cos ^{4} 2 \theta=\frac{3}{4}$ को संतुष्ट करने वाले $\theta \in\left(0, \frac{\pi}{2}\right)$ के सभी मानों का योग है
माना $\alpha ,\beta $ इस प्रकार है कि $\pi < (\alpha - \beta ) < 3\pi $. यदि $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ तथा $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ तो $\cos \frac{{\alpha - \beta }}{2}$ का मान है
सिद्ध कीजिए $\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$
त्रिभुज $ABC$ में $\sin 2A + \sin 2B + \sin 2C$ बराबर है