14.Probability
hard

નિદેશાવકાશમાં કોઇ બે ઘટનાઓ $A$ અને $B$ માટે,

A

$P\,\left( {\frac{A}{B}} \right) \ge \frac{{P(A) + P(B) - 1}}{{P(B)}},\,\,P(B) \ne 0$ હંમેશા સત્ય છે.

B

$P\,(A \cap \bar B) = P(A) - P(A \cap B)$ શક્ય થાય નહિ.

C

જો $A$ અને $ B$ એ અલગ ગણ હોય, તો $P\,(A \cup B) = 1 - P(\bar A)\,P(\bar B),$

D

એકપણ નહિ.

(IIT-1991)

Solution

(a) We know that $P(A/B) = \frac{{P(A \cap B)}}{{P(B)}}$

Also we know that $P(A \cup B) \le 1$

$ \Rightarrow P(A) + P(B) – P(A \cap B) \le 1$

$ \Rightarrow P(A \cap B) \ge P(A) + P(B) – 1$

$ \Rightarrow \frac{{P(A \cap B)}}{{P(B)}} \ge \frac{{P(A) + P(B) – 1}}{{P(B)}}$

$ \Rightarrow P(A/B) \ge \frac{{P(A) + P(B) – 1}}{{P(B)}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.