ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P( E-$ નહિ અથવા $F-$ નહિ) $= 0.25$, ચકાસો કે $E$ અને $F$ પરસ્પર નિવારક છે કે નહિ? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P$ (not $E$ or not $F$ ) $=0.25$

i.e.,  $P \left( E ^{\prime} \cap F ^{\prime}\right)=0.25$

$\Rightarrow P ( E \cap F )^{\prime} =0.25$              $[ E^{\prime} \cup F^{\prime} =( E \cap F )^{\prime}]$

Now, $P ( E \cap F )=1- P ( E \cap F )^{\prime}$

$\Rightarrow P ( E \cap F )=1-0.25$

$\Rightarrow P ( E \cap F )=0.75 \neq 0$

$\Rightarrow E \cap F \neq \phi$

Thus, $E$ and $F$ are not mutually exclusive.

Similar Questions

રમવાની $52$ પત્તાંની થોકડીમાંથી બે પત્તાં યાદચ્છિક રીતે પુરવણી વગર પસંદ કરવામાં આવે છે. બંને પત્તાં કાળા રંગનાં હોય તેની સંભાવના શોધો. 

$52$ પત્તા પૈકી યાર્દચ્છિક રીતે એક પત્તુ પસંદ કરતા તે પૈકી રાજા અથવા કાળીનું પત્તુ હોવાની સંભાવના કેટલી થાય ?

નારંગીના ખોખામાંથી યાચ્છિક રીતે પુરવણી વગર ત્રણ નારંગી પસંદ કરીને તે ખોખાને તપાસવામાં આવે છે. જો તમામ ત્રણ નારંગીઓ સારી હોય, તો ખોખાના વેચાણ માટે સ્વીકાર કરાય છે, અન્યથા તેનો અસ્વીકાર કરવામાં આવે છે. જો ખોખામાં સમાવિષ્ટ $15$ નારંગી પૈકી $12$ સારી અને $3$ ખરાબ હોય, તો તેને વેચાણ માટે મંજૂરી મળે તેની સંભાવના શોધો.

એક પાસાને ત્રણ વખત ફેંકવામાં આવે છે. ઓછામાં ઓછી એક વખત અયુગ્મ સંખ્યા મળે તેની સંભાવના શોધો.

ઘટના $A$ અને $B$ છે. ઓછામાં એક ઘટના બને તેની સંભાવના $0.6,$ બન્ને ઘટના બને તેની સંભાવના $0.2$ છે. તો $P(A) + P(B)= …....$