For component of a vector $A =(3 \hat{ i }+4 \hat{ j }-5 \hat{ k })$, match the following colum.
Colum $I$ Colum $II$
$(A)$ $x-$axis $(p)$ $5\,unit$
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ $(q)$ $4\,unit$
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ $(r)$ $0$
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ $(s)$ None

  • A
    $( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow s )$
  • B
    $( A \rightarrow p , B \rightarrow r , C \rightarrow s , D \rightarrow s )$
  • C
    $( A \rightarrow r , B \rightarrow q , C \rightarrow s , D \rightarrow s )$
  • D
    $( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow p )$

Similar Questions

Show that $a \cdot( b \times c )$ is equal in magnitude to the volume of the parallelepiped formed on the three vectors, $a, b$ and $c$.

Define the scalar product and obtain the magnitude of a vector from it. Mention the direction of scalar product.

Vector product of two vectors $2\hat i\, + \,\hat j\,$ and $\hat i\, + \,2\hat j\,$ is

For what value of $x$, will the two vectors $A =2 \hat{ i }+2 \hat{ j }-x \hat{ k }$ and $B =2 \hat{ i }-\hat{ j }-3 \hat{ k }$ are perpendicular to each other?

If $A$ is a unit vector in a given direction, then the value of $\hat{ A } \cdot \frac{d \hat{ A }}{d t}$ is