Gujarati
Hindi
3-1.Vectors
medium

For component of a vector $A =(3 \hat{ i }+4 \hat{ j }-5 \hat{ k })$, match the following colum.
Colum $I$ Colum $II$
$(A)$ $x-$axis $(p)$ $5\,unit$
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ $(q)$ $4\,unit$
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ $(r)$ $0$
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ $(s)$ None

A$( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow s )$
B$( A \rightarrow p , B \rightarrow r , C \rightarrow s , D \rightarrow s )$
C$( A \rightarrow r , B \rightarrow q , C \rightarrow s , D \rightarrow s )$
D$( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow p )$

Solution

(a)
$(2 \hat{ i }+\hat{ j }+4 \hat{ k })$ is perpendicular to $A$, because the dot product of these two vectors is zero.
Further $(6 \hat{ i }+4 \hat{ j }-10 \hat{ k })$ vectors is parallel to A. So, component of A along this vector is magnitude of A which is $5 \sqrt{2}$ unit. The last vector i.e. $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ is anti-parallel to $A$ along this vector is negative of magnitude of A or $-5 \sqrt{2}$ unit.
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.