Colum $I$ | Colum $II$ |
$(A)$ $x-$axis | $(p)$ $5\,unit$ |
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ | $(q)$ $4\,unit$ |
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ | $(r)$ $0$ |
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ | $(s)$ None |
Show that $a \cdot( b \times c )$ is equal in magnitude to the volume of the parallelepiped formed on the three vectors, $a, b$ and $c$.
Define the scalar product and obtain the magnitude of a vector from it. Mention the direction of scalar product.
Vector product of two vectors $2\hat i\, + \,\hat j\,$ and $\hat i\, + \,2\hat j\,$ is