For component of a vector $A =(3 \hat{ i }+4 \hat{ j }-5 \hat{ k })$, match the following colum.
Colum $I$ Colum $II$
$(A)$ $x-$axis $(p)$ $5\,unit$
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ $(q)$ $4\,unit$
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ $(r)$ $0$
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ $(s)$ None

  • A
    $( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow s )$
  • B
    $( A \rightarrow p , B \rightarrow r , C \rightarrow s , D \rightarrow s )$
  • C
    $( A \rightarrow r , B \rightarrow q , C \rightarrow s , D \rightarrow s )$
  • D
    $( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow p )$

Similar Questions

Find the magnitude and direction of the resultant of two vectors $A$ and $B$ in terms of their magnitudes and angle $\theta$ between them.

Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously${\overrightarrow F _1} = - 4\hat i - 5\hat j + 5\hat k$, ${\overrightarrow F _2} = 5\hat i + 8\hat j + 6\hat k$, ${\overrightarrow F _3} = - 3\hat i + 4\hat j - 7\hat k$ and ${\overrightarrow F _4} = 2\hat i - 3\hat j - 2\hat k$ then the particle will move

For the given vector $\vec A =3\hat i -4\hat j+10\hat k$ , the ratio of magnitude of its component on the $x-y$ plane and the component on $z-$ axis is

A displacement vector of magnitude $4$ makes an angle $30^{\circ}$ with the $x$-axis. Its rectangular components in $x-y$ plane are .........

The magnitude of pairs of displacement vectors are given. Which pair of displacement  vectors cannot be added to give a resultant vector of magnitude $13\, cm$?