7.Binomial Theorem
hard

For natural numbers $m,n$ ,if ${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + \ldots \;$ and $a_1= a_2=10,$ then $(m,n)$ =______. 

A

$(20,45)$

B

$(35,20)$

C

$(45,35)$

D

$(35,45)$

(AIEEE-2006)

Solution

$(1-y)^{m}(1+y)^{n}$

$=\left(^{m} C_{0}-^{m} C_{1} y+^{m} C_{2} y^{2}+\ldots .\right)$$\left(^{n} C_{0}+^{n} C_{1} y+^{n} C_{2} y^{2}+\ldots\right)$

$a_{1}=$ Coefficient of $y=^{n} C_{1}-^{m} C_{1}=10$

$\Rightarrow n-m=10$

$a_{2}=$ Coefficient of $y^{2}$

$=^{n} C_{2}+^{n} C_{1} \times^{m} C_{1}+^{m} C_{2}=10$

$\Rightarrow \frac{n(n-1)}{2}-n m+\frac{m(m-1)}{2}=10$

$\Rightarrow n(n-1)-2 n m+m(m-1)=20$

$\Rightarrow(m+10)(m+9)-2(m+10) m+m(m-1)=20$

$\Rightarrow 90+19 m+m^{2}-2 m^{2}-20 m+m^{2}-m-20=0$

$\Rightarrow 70-2 m=0$

$\Rightarrow m=35$

$\therefore n=10+35=45$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.