If ${ }^{20} \mathrm{C}_{\mathrm{r}}$ is the co-efficient of $\mathrm{x}^{\mathrm{r}}$ in the expansion of $(1+x)^{20}$, then the value of $\sum_{r=0}^{20} r^{2}\,\,{ }^{20} C_{r}$ is equal to :

  • [JEE MAIN 2021]
  • A

    $420 \times 2^{19}$

  • B

    $380 \times 2^{19}$

  • C

    $380 \times 2^{18}$

  • D

    $420 \times 2^{18}$

Similar Questions

${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ is

The sum of coefficients of integral power of $x$ in the binomial expansion ${\left( {1 - 2\sqrt x } \right)^{50}}$ is :

  • [JEE MAIN 2015]

Let $[ x ]$ denote greatest integer less than or equal to $x .$ If for $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ is equal to

  • [JEE MAIN 2021]

If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$ equals

For $x\, \in \,R\,,\,x\, \ne \, - 1,$ if ${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ....{x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i\,}{\,x^i}} ,$ then $a_{17}$ is equal to

  • [JEE MAIN 2016]