If $\sum_{r=1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !),$ then the value of $\alpha$ is equal to ...... .

  • [JEE MAIN 2021]
  • A

    $180$

  • B

    $148$

  • C

    $160$

  • D

    $176$

Similar Questions

$\sum\limits_{n = 0}^4 {{{\left( {1009 - 2n} \right)}^4}\left( \begin{gathered}
  4 \hfill \\
  n \hfill \\ 
\end{gathered}  \right)} {\left( { - 1} \right)^n}$   is

In the expansion of ${(x + a)^n}$, the sum of odd terms is $P$ and sum of even terms is $Q$, then the value of $({P^2} - {Q^2})$ will be

The sum of the last eight coefficients in the expansion of ${(1 + x)^{15}}$ is

$2.{}^{20}{C_0} + 5.{}^{20}{C_1} + 8.{}^{20}{C_2} + 11.{}^{20}{C_3} + ......62.{}^{20}{C_{20}}$ is equal to

  • [JEE MAIN 2019]

The sum of the series $\sum\limits_{r = 0}^n {{{( - 1)}^r}\,{\,^n}{C_r}\left( {\frac{1}{{{2^r}}} + \frac{{{3^r}}}{{{2^{2r}}}} + \frac{{{7^r}}}{{{2^{3r}}}} + \frac{{{{15}^r}}}{{{2^{4r}}}} + .....m\,{\rm{terms}}} \right)} $ is