- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
For positive numbers $x,y$ and $z$ the numerical value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$is
A
$0$
B
$1$
C
${\log _e}xyz$
D
None of these
(IIT-1993)
Solution
(a) $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$
= $(1 – {\log _z}y{\log _y}z) – {\log _x}y({\log _y}x – {\log _z}x{\log _y}z)$$ + {\log _x}z({\log _y}x{\log _z}y – {\log _z}x)$
= $(1 – 1)\, – (1 – {\log _x}y{\log _y}x) + ({\log _x}z{\log _z}x – 1) = 0$ $\{$ Since ${\log _x}y.{\log _y}x = 1\} $
Standard 12
Mathematics