If $px^4 + qx^3 + rx^2 + sx + t$ $\equiv$ $\left| {\begin{array}{*{20}{c}}{{x^2}\, + \,\,3x}&{x\, - \,1}&{x\, + \,3}\\{x\, + \,1}&{2\, - \,x}&{x\, - \,3}\\{x\, - \,3}&{x\, + \,4}&{3x}\end{array}} \right|$ then $t =$
$33$
$0$
$21$
none
The system of equations $kx + 2y\,-z = 1$ ; $(k\,-\,1)y\,-2z = 2$ ; $(k + 2)z = 3$ has unique solution, if $k$ is equal to
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ are
If $n$ be the number of values of $x$ for which
matrix $\Delta (x) =\left[ {\begin{array}{*{20}{c}}
{ - x}&x&2\\
2&x&{ - x}\\
x&{ - 2}&{ - x}
\end{array}} \right]$ will be singular, then $det(\Delta\,(n))$ is
$($ where $det(B)$ denotes determinant of Matrix $B) -$
If the system of linear equation $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ is
consistent, then
If the system of equations $2x + 3y - z = 0$, $x + ky - 2z = 0$ and $2x - y + z = 0$ has a non -trivial solution $(x, y, z)$, then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to