If $\left| {{\kern 1pt} \begin{array}{*{20}{c}}1&2&3\\2&x&3\\3&4&5\end{array}\,} \right| = 0,$ then $x =$
$-5/2$
$-2/5$
$5/2$
$2/5$
(c) Since $x = \frac{5}{2}$ satisfies the given determinant.
If $|A|$ denotes the value of the determinant of the square matrix $A$ of order $3$ , then $ |-2A|=$
Let $a,b,c$ be positive real numbers. The following system of equations in $x, y$ and $ z $ $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} – \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, – \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$ has
If $A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&1 \end{array}} \right]$ and $\det ({A^n} – I) = 1 – {\lambda ^n}\,,\,n \in N$ then $\lambda $ is
If the system of linear equations $2 x+3 y-z=-2$ ; $x+y+z=4$ ; $x-y+|\lambda| z=4 \lambda-4$ (where $\lambda \in R$), has no solution, then
The value of $\lambda $ for which the system of equations $2x – y – z = 12,$ $x – 2y + z = – 4,$ $x + y + \lambda z = 4$ has no solution is
Confusing about what to choose? Our team will schedule a demo shortly.