If $\left| {{\kern 1pt} \begin{array}{*{20}{c}}1&2&3\\2&x&3\\3&4&5\end{array}\,} \right| = 0,$ then $x =$
$-5/2$
$-2/5$
$5/2$
$2/5$
(c) Since $x = \frac{5}{2}$ satisfies the given determinant.
Let $\mathrm{A}(-1,1)$ and $\mathrm{B}(2,3)$ be two points and $\mathrm{P}$ be a variable point above the line $A B$ such that the area of $\triangle \mathrm{PAB}$ is $10$ . If the locus of $\mathrm{P}$ is $\mathrm{ax}+\mathrm{by}=15$, then $5 a+2 b$ is :
The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x – y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on
If $a, b, c$ are three complex numbers such that $a^2 + b^2 + c^2 = 0$ and $\left| {\begin{array}{*{20}{c}} {\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\ {ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\ {ac}&{bc}&{\left( {{a^2} + {b^2}} \right)} \end{array}} \right| = K{a^2}{b^2}{c^2}$ then value of $K$ is
The value of $\left| {\begin{array}{*{20}{c}} {\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha + \gamma } \right)}\\ {\sin \beta }&{\cos \beta }&{\sin \left( {\beta + \gamma } \right)}\\ {\sin \delta }&{\cos \delta }&{\sin \left( {\gamma + \delta } \right)} \end{array}} \right|$ is
If $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ then the determinant $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ is equal to :
Confusing about what to choose? Our team will schedule a demo shortly.