વાસ્તવિક સંખ્યા $\alpha$ અને $\beta$ માટે આપેલ સમીકરણ સંહતિને ધ્યાનમાં લ્યો.
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$ આપેલ સમીકરણ સંહતિના અસંખ્ય બીજો હોય તો $\alpha+\beta$ ની કિમંત મેળવો.
$4$
$5$
$6$
$7$
$\lambda$ અને $\mu$ ની અનુક્રમે ............. કિમતો માટે સુરેખ સમીકરણ સંહિતા
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
ને અનંત ઉકેલો મળે
અહી $[\lambda]$ એ મહતમ પૃણાંક વિધેય છે. $\lambda$ ની કિમંતો નો ગણ મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ નો ઉકેલ મળે.
જો $p{\lambda ^4} + q{\lambda ^3} + r{\lambda ^2} + s\lambda + t = $ $\left| {\,\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda }&{\lambda - 1}&{\lambda + 3}\\{\lambda + 1}&{2 - \lambda }&{\lambda - 4}\\{\lambda - 3}&{\lambda + 4}&{3\lambda }\end{array}\,} \right|$ તો $t$ ની કિમત મેળવો.
સમીકરણની સંહતિ $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ નો ઉકેલ ખાલીગણ હોય તો $\alpha $ કિમત મેળવો.
$k$ ની કઈ કિમંત માટે આપેલ સમીકરણોનો શૂન્યતર ઉકેલ મળે ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$