$\left(2+\frac{x}{3}\right)^{n}$ ના વિસ્તરણમાં જો $x^{7}$ અને $x^{8}$ ના સહગુણક સમાન હોય તો $n$ ની કિમંત મેળવો.
જો $\alpha>0, \beta>0$ એવા મળે કે જેથી $\alpha^{3}+\beta^{2}=4$ થાય અને $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ ના વિસ્તરણમાં $x$ થી સ્વત્રંત પદ $10 k$ થાય તો $\mathrm{k}$ ની કિમત મેળવો
$(1 + x)^{43}$ ના વિસ્તરણમાં જો $(2r + 1)^{th}$ અને $(r + 2)^{th}$ પદોના સહગુણકો સમાન હોય તો $r$ ની કિમત મેળવો
${(1 + {t^2})^{12}}(1 + {t^{12}})\,(1 + {t^{24}})$ ના વિસ્તરણમાં ${t^{24}}$ નો સહગુણક મેળવો.
જો ${\left( {a{x^2} + \frac{1}{{bx}}} \right)^{11}}$ ના વિસ્તરણમાં ${x^{7}}$ નો સહગુણક એ ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ ના વિસ્તરણમાં ${x^{-7}}$ નો સહગુણક સમાન હોય , તો $ab =$