For the function$x + {1 \over x},x \in [1,\,3]$, the value of $ c$  for the mean value theorem is

  • A

    $1$

  • B

    $\sqrt 3 $

  • C

    $2$

  • D

    None of these

Similar Questions

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=x^{2}-1$ for $x \in[1,2]$

Which of the following function can satisfy Rolle's theorem ?

Let $f$ and $g$ be twice differentiable even functions on $(-2,2)$ such that $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ and $g\left(\frac{3}{4}\right)=0, g(1)=2$ Then, the minimum number of solutions of $f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)=0$ in $(-2,2)$ is equal to

  • [JEE MAIN 2022]

For every pair of continuous functions $f, g:[0,1] \rightarrow R$ such that $\max \{f(x): x \in[0,1]\}=\max \{g(x): x \in[0,1]\}$, the correct statement$(s)$ is (are) :

$(A)$ $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$

$(B)$ $(f(c))^2+f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$

$(C)$ $(f(c))^2+3 f(c)=(g(c))^2+g(c)$ for some $c \in[0,1]$

$(D)$ $(f(c))^2=(g(c))^2$ for some $c \in[0,1]$

  • [IIT 2014]

The function $f(x) = x(x + 3){e^{ - (1/2)x}}$ satisfies all the conditions of Rolle's theorem in $ [-3, 0]$. The value of $c$ is