- Home
- Standard 12
- Mathematics
શ્રેણિક $\left[\begin{array}{ccc}e^t & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\e^t & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\e^t & e^{-t} \cos t & e^{-t} \sin t \end{array}\right]$ વ્યસ્ત સંપન્ન થાય તેવી તમામ $t \in R$ની કિંમતોનો ગણ $.......$ છે.
$\left\{(2 k +1) \frac{\pi}{2}, k \in Z \right\}$
$\left\{ k \pi+\frac{\pi}{4}, k \in Z \right\}$
$\{ k \pi, k \in Z \}$
$R$
Solution
If its invertible, then determinant value $\neq 0$
So,
$\left|\begin{array}{ccc}e^t & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^t & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^t & e^{-t} \cos t & e^{-t} \sin t\end{array}\right| \neq 0$
$\Rightarrow e ^{ t } \cdot e ^{- t } \cdot e ^{- t }\left|\begin{array}{ccc}1 & \sin t -2 \cos t & -2 \sin t-\cos t \\ 1 & 2 \sin t+\cos t & \sin t-2 \cos t \\ 1 & \cos t & \sin t\end{array}\right| \neq 0$
Applying, $R _1 \rightarrow R _1- R _2$ then $R _2 \rightarrow R _2- R _3$ We get
$e ^{- t }\left|\begin{array}{ccc}0 & -\sin t -\cos t & -3 \sin t +\cos t \\0 & 2 \sin t & -2 \cos t \\1 & \cos t & \sin t\end{array}\right| \neq 0$
By expanding we have,
$e ^{- t } \times 1\left(2 \sin t \cos t +6 \cos ^2 t +6 \sin ^2 t -2 \sin t \cos t \right) \neq 0$
$\Rightarrow e ^{- t } \times 6 \neq 0$
$\text { for } \forall t \in R$