3 and 4 .Determinants and Matrices
hard

$3 \times 3$ શ્રેણિક $A$ કે જેના ઘટકોએ ગણ $(0,1,2,3)$ માંથી છે કે જેથી $AA ^{ T }$ ના વિકર્ણોના ઘટકોનો સરવાળો $9$ થાય છે તો  આવા કેટલા શ્રેણિક મળે ?

A

$728$

B

$712$

C

$824$

D

$766$

(JEE MAIN-2021)

Solution

Let $A =\left[\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right]$

diagonal elements of $AA ^{ T }, \quad a ^{2}+ b ^{2}+ c ^{2}, d ^{2}+ e ^{2}+ f ^{2}, g ^{2}+ b ^{2}+ c ^{2}$

Sum $=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}+g^{2}+h^{2}+i^{2}=9$ $a , b , c , d , e , f , g , h , i \in\{0,1,2,3\}$

  Case No. of Matrices
$(1)$ $All -1 s$ $\frac{9 !}{9 !}=1$
$(2)$ One $\rightarrow 3$
remaining$-0$
$\frac{9 !}{1 ! \times 8 !}=9$
$(3)$ One$-2$ five $-1s$ three$-0s$ $\frac{9 !}{1 ! \times 5 ! \times 3 !}=8 \times 63$
$(4)$ two $-2^{\prime}$ s
one$-1$ $\operatorname{six}-0^{\prime} s$
$\frac{9 !}{2 ! \times 6 !}=63 \times 4$

Total no. of ways $=1+9+8 \times 63+63 \times 4$

$=766$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.