સુરેખ સમીકરણ સંહતિ $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$ માટે,નીચેના પૈકી કયું વિધાન સાચું નથી?
જો $\alpha=2$ અને $\beta=-1$ તો તેને અસંખ્ય ઉકેલો છેદે.
જો $\alpha=-2$ અને $\beta=1$ તો તેનો એક પણ ઉકેલ નથી.
જો $\alpha=2$ and $\beta=1$,તો $x+y+z=\frac{3}{4}$
જો $\alpha=1$ અને $\beta=-1$ તો તેને અસંખ્ય ઉકેલો છેદે.
જો $\omega $ એ એકનું કાલ્પનિક બીજ હોય , તો $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $
જો સમીકરણ સંહતિ
$2 x+y-z=5$
$2 x-5 y+\lambda z=\mu$
$x+2 y-5 z=7$
ને અસંખ્ય ઉકેલો હોય,તો
$(\lambda+\mu)^2+(\lambda-\mu)^2=........$
$\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$ નું મૂલ્ય શોધો.
જેના માટે $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$ થાય તેવી $\alpha$ ની કિંમત..................... અંતરાલમાં આવે છે.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ ના બીજ મેળવો.