જો $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; તો $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} - {b_3}{c_2}}&{{c_2}{a_3} - {c_3}{a_2}}&{{a_2}{b_3} - {a_3}{b_2}}\\{{b_3}{c_1} - {b_1}{c_3}}&{{c_3}{a_1} - {c_1}{a_3}}&{{a_3}{b_1} - {a_1}{b_3}}\\{{b_1}{c_2} - {b_2}{c_1}}&{{c_1}{a_2} - {c_2}{a_1}}&{{a_1}{b_2} - {a_2}{b_1}}\end{array}\,} \right|$ = . . .

  • A

    $5$

  • B

    $25$

  • C

    $125$

  • D

    $0$

Similar Questions

જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
  {{a^2}}&{{d^2}}&x \\ 
  {{b^2}}&{{e^2}}&y \\ 
  {{c^2}}&{{f^2}}&z 
\end{array}} \right|$ એ . . . .  પર આધારિત હોય.

જો સમીકરણ સંહિતા 

$x-2 y+3 z=9$

$2 x+y+z=b$

$x-7 y+a z=24$

ને અનંત ઉકેલો હોય તો $a - b$ ની કિમત મેળવો 

  • [JEE MAIN 2020]

જો $(\mathrm{k}, 0),(4,0),(0,2)$ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ $4$ ચોરસ એકમ હોય, તો $\mathrm{k}$ નું મૂલ્ય શોધો.

$c \in R$ ની મહતમ કિમંત મેળવો કે જેથી સુરેખ સમીકરણો $x - cy - cz = 0 \,\,;\,\, cx - y + cz = 0 \,\,;\,\, cx + cy - z = 0 $ ને શૂન્યતર ઉકેલ છે . 

  • [JEE MAIN 2019]

સુરેખ સમીકરણોની સંહતિ  $\lambda x+2 y+2 z=5$ ; $2 \lambda x+3 y+5 z=8$ ; $4 x+\lambda y+6 z=10$ ને . . . . 

  • [JEE MAIN 2020]